Поезда на магнитном подвесе

Главная » Новости » Поезда на магнитном подвесе

В последнее время широкую популярность начал приобретать магнитоплан или Маглев. Это поезд, в конструкции которого присутствует магнитный подвес. Он движется и управляется с помощью магнитных сил. Главное отличие от обычного поезда заключается в том, что при движении поезд не будет касаться поверхности рельс. Между поездом и поверхностью движения присутствует небольшой зазор. Единственной тормозящей силой является сила аэродинамического сопротивления.

Магнитоплан

Маглев – поезд на магнитном подвесе

Скорость, которую может достигать Маглев достаточно высока. Ее можно сравнить со скоростью самолета. Идея не является новой и была известна достаточно давно. Однако полноценно воплотить ее в жизнь удавалось всего несколько раз. Проблема заключается в том, что Маглев не может использовать существующую транспортную инфраструктуру. Хотя можно встретить проекты, в которых расположение магнитной дороги проходит между обычных рельс. В этой статье вы узнаете интересные факты о поездах, которые работают на магнитном подвесе.

Сведения о поездах

На данный момент можно встретить три технологии магнитного подвеса:

  1. На сверхпроводящих магнитах (подвеска EDS).
  2. На электромагнитах (подвеска EMS).
  3. На постоянных магнитах – это сравнительно новая технология, которая еще не приобрела широкого распространения. По мнению многих экспертов эту технологию можно считать самой экономичной.
Виды электромагнитной подвески

Подвеска для Маглева

Состав левитирует за счет отталкивания одинаковых полюсов. Процесс движения осуществляется с помощью линейного двигателя.

Линейный электродвигатель

Цилиндрический линейный электродвигатель

Линейный электродвигатель – это двигатель, у которого один из элементов магнитной системы разомкнут и имеет развернутую обмотку. Сейчас многие специалисты регулярно изготовляют различные проекты линейных двигателей, но все их можно разделить на две категории:

  • двигатели низкого ускорения;
  • двигатели высокого ускорения.

Двигатели низкого ускорения будут использоваться только в общественном транспорте (маглев, монорельс, метрополитен). Двигатели высокого ускорения небольшие по своей длине и обычно используются, чтобы быстро разогнать объект до максимальной скорости. Чаще всего их используют для при исследовании гиперскоростных столкновений. Линейные двигатели также активно используют в приводах подачи металлорежущих станков и робототехники. Главной проблемой при проектировании подобных двигателей считается большой вес мощных магнитов.

Электромагнитные рельсы

Конструкция рельс для поезда Маглев

Если изучить теорему Ирншоу, тогда можно сделать вывод, что статичные поля, которые создаются только электромагнитами нестабильны в отличии от диамагнетиков. Диамагнетики – это вещества, которые намагничиваются навстречу направлению действующего на них внешнего магнитного поля. Диамагнетики не имеют магнитного момента и сверхпроводящих магнитов. На сегодняшний день существуют уникальные системы стабилизации: датчики постоянно измеряют расстояние от поезда до пути и соответственно ему будет меняться напряжение на электромагнитах. Передовые разработки в этой области ведет Германия и Япония.

Преимущества и недостатки

К главному преимуществу можно отнести то, что теоретически – это самая высокая скорость, которую можно получить на серийном наземном транспорте. Также поезд едет практически бесшумно. Однако у технологии создания поездов на магнитном подвесе есть и недостатки, к которым относят:

  1. Высокая стоимость создания магнитных колей.
  2. Вес магнитов достаточно большой.
  3. Магнитная подвеска создает электромагнитное поле, которое может оказаться вредным для поездных бригад и местных жителей, которые проживают рядом. По мнению специалистов линии Маглева будут недоступны для людей, которые используют кардиостимуляторы.
  4. На высокой скорости необходимо контролировать зазор между колеей и поездом. Для этого нужны быстродействующие системы управления.
  5. Потребуется сложная путевая инфраструктура.

Проекты магнитных дорог достаточно разнообразные. Например, Tubular Rail предлагает полностью отказаться от использования рельс.

Реализация

M-Bahn в Берлине

Это первая система Маглев, которая была построена в 1980 году. Дорога имеет длину в 1.6 км и соединяет между собою три станции. Запуск этой дороги состоялся 28 августа 1989 года. На протяжении 9 лет длились испытания. Из-за того, что магнитная дорога перекрывала важный участок метро ее, демонтировали в 31 июля 1991 года.

Бирмингем

Это не скоростной Маглев-челнок. Он ходил от Бирмингемского аэропорта до ближайшей железнодорожной станции с 1984 по 1995 год. Длина трассы составляла всего 600 метров, а высота подвеса 1.5 см. Дорога проработала на протяжении 10 лет. После этого была закрыта по жалобам пассажиров.

Шанхай

Немецкую компанию Transrapid совершенно не отпугнула первая неудача в Берлине. Дочерние предприятия Siemens AG и ThyssenKrup не отказывались от разработки магнитной железной дороги. В результате длительной работы компании получили заказ от китайского правительства на строительство высокоскоростной трассы от Шанхайского аэропорта Пудун до Шанхая.

Маглев в Шанхае

Высокоскоростной Маглев в Шанхае

Эта дорога была открыта в 2002 году и ее продолжительность составила 30 км. В будущем правительство планирует ее удлинить до старого аэропорта Хунцяо и далее на юго-запад Ханчжоу. После этого ее продолжительность составит 175 километров.

Япония

В Японии испытывается дорога, которая расположилась в окрестностях префектуры Яманаси. Ее строительство происходило по технологии JR-Maglev. В процессе проведения испытаний MLX01-901 с пассажирами удалось добиться скорости в 581 км/час.

К открытию выставки EXPO 2005 в эксплуатацию также была введена еще одна новая трасса, которая имеет протяжность в 9 км и состоит из 9 станций. Поезда, которые работают на этой линии изготовлены компанией Chubu HSST Developmtnt Corp.

Япония запустит поезд на магнитной подушке

Согласно некоторым данным уже в 2025 году Япония планирует запустить скоростной поезд на магнитной подушке. Постройка новой линии и приобретение составов обойдется в 45 миллиардов долларов США. Будущий поезд будет использовать технологию магнитной левитации. За счет этого состав будет парить над линией и не соприкасаться с ней. Благодаря этому скорость значительно увеличится.

По предварительным данным поезда с электромагнитной линией будут достигать скорости в 500 километров в час. Постройкой линии будет заниматься известная компания Central Japan Railway Co.

Мнение экологов WWF неоднозначно. Они сообщают, что самая большая опасность заключается в шумовых загрязнениях. Постоянное пребывание в районе этого шума может вызвать беспокойство и раздражение. Проблем с магнитным излучением, как правило не наблюдается. Это связано с тем, что поезда курсируют на дальние расстояния и через большие временные промежутки.

Изучите также: vse-elektrichestvo.ru/novosti/robotic-cable-inspection-system.html.

(Пока оценок нет)
Загрузка...

Поделитесь своим мнением

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Лимит времени истёк. Пожалуйста, перезагрузите CAPTCHA.